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A method is presented of determining strain distributions in distorted crystals from measurements of 
distortion coefficients derived from a Fourier analysis of broadened diffraction lines. The moments of 
the strain distribution are determined approximately from the distortion coefficients and used to de- 
termine the expansion coefficients in a series of Hermite polynomials which, together with a weight 
function, represents the strain distribution. The advantage of the method lies in the fact that when 
measurements are made on only three reflexions from a distorted crystal a reasonably accurate strain 
distribution may be derived and intermediate steps in the computation enable an assessment to be 
made of the importance of the measured distortion coefficients and where emphasis should be placed 
in improving experimental accuracy. The method is illustrated with the use of the Gaussian as an 
appropriate weight function, but a suitable choice of the set of polynomials permits a wide range of 
weight ftmctions to be used. 

It has been shown (Wilson 1942, 1943, 1949; Stokes & 
Wilson 1942, 1944) that the function describing the 
shape of the lines of the diffraction pattern of a distort- 
ed crystal may be represented by a Fourier series. 

Averbach & Wairen (1949, 1950) used essentially the 
same formulation in their treatment of experiments on 
cold-worked metals and their work was extended by 
Eastbrook & Wilson (1952). It was pointed out by 
Stokes & Wilson (1944) how the distribution of strains 
in a distorted crystal could be obtained from a line 
once the instrumental broadening had been removed, 
and Warren & Averbach (1950) and Easterbrook & 
Wilson (1952) showed that the Fourier transform of the 
Fourier coefficients expressing the distortion of the 
crystal gave the strain distribution directly. The topic 
of the X-ray measurement of distorted crystals was 
reviewed by Warren (1959) and the notation of War- 
ren's article will be used in this paper. 

Using Warren's notation the distribution of diffract- 
ed power in the 00l line from the diffraction pattern 
of the distorted crystal is given by 

P(O) = K(O) N Z An cos 2zrn(h3-1) 

+ Bn sin 2rcn(h3-l) (1) 

where K(O) is a slowly varying function of 0, the dif- 
fraction angle, N is the number of cells in the coherent- 
ly diffracting domain, h 3 - l = 2 a 3 / 2  (sin 0 - s i n  00), 00 
corresponding to the origin used for the diffraction line, 
a3 is the quantity ld(d being the interplanar spacing in 
the 00l direction) and 2 is the wavelength of the X-rays. 
The Fourier coefficients An and Bn are given by 

A n = N n / N  (cos (2n LhoeL/a))average (2) 
Bn= - N n / N ( s i n  (2n LhoeL/a))average (3) 

for cubic crystals. The term eL is the strain and the 
suffix L denotes that it is averaged over a distance L in 
the crystal. When the reflexion is of the type 00l then 
h0 = l. If  the crystal is cubic h0 is given by h~ = h 2 + k z + 12 

so that when the length of the unit cell edge is a then 
a3/l = a/ho. When the cubic crystal is elastically isotropic 
the above relations for An and Bn hold for all hklreflex- 
ions. In the case of anisotropic crystals the strain distri- 
bution may differ in different crystallographic direct- 
ions and this is reflected in a different set of A n and Bn 
for each hkl direction. 

The coefficients An and Bn may be represented by a 
product of a 'particle size' term and a distortion term 
as follows: 

S D _ _  S D An A n A n , Bn , = -B~B, ,  

where the superscripts denote size(S) and distortion(D). 

and A s = Nn/N , B s = Un/N , 

A~=(cos  (2re Lhoez/a)) ,  B~= - ( s i n  (2re Lhoez/a)). 

The term Nn/N, which is related to the distribution of 
sizes of coherently diffracting domains in the crystal, 
will not be discussed in this paper. The negative sign 
in the expression for B~ simply indicates a net shift of 
the diffraction line to lower angles for a positive mean 
strain in the crystal. 

In terms of a normalized strain distribution function 
P(ez) the distortion terms are given by 

A~ = f P(eL) cos (2re Lho eLla) deL (4) 

B°. = f e(eL) sin (2~ Lho eL~a) deL . (5) 
The strain distribution function itself is given directly 
as the Fourier transform of the measured AnD and B~ 
values, so 

e(eL) = L/a S {A~ cos (2re LhoeL/a) 

+ B ~  sin (2zc Lhoez/a)} dho. (6) 

In order to perform the Fourier transformation the 
coefficients must be determined for enough values of 
h0 so that they may be considered a known function of 
h0. For elastically isotropic crystals all hkl reflexions 
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may be used and because of this McKeehan & Warren 
(1953), with measurements of about seven reflexions 
from cold-worked tungsten, were able to collect enough 
data to perform the transformation. Chipman & War- 
ren (1952) also used a Fourier transformation in the 
treatment of their measurements on neutron irradiated 
graphite but because of experimental difficulties only 
three reflexions of the 00l type could be obtained, and 
this led the authors to doubt the final strain distribu- 
tion computed from so little data. 

The use of a moment method 

An attractive approach to the problem of solving the 
integral equations relating the distortion coefficients 
to the strain distribution is to use the moments of the 
strain determinable, approximately, from the coef- 
ficients themselves. This may be done as follows. Ex- 
panding the strain distribution P(eL) in terms of a 
weight function W(eL) and an orthonormal set of poly- 
nomials Pn(eL) we have 

P(eL) = W(eL) .S an Pn(eL), (7) 
n 

in which the an are expansion coefficients and the weight 
function W(eL) and the set of polynomials Pn(eL) are 
so chosen so that 

.f W(ez) Pn(eL) Pro(eL) deL = .f(n) (~mn (8) 

where 6mn is the Kronecker delta 

5mn=O for m e n  
(~mn= l for m=n , 

andf(n) is a function of n, the order of the polynomial. 
Then we find 

.f P(ez) Pm(ez) dez = am f(m) . (9) 

Now since 
Pro(eL) = Z CneTc (10) 

n 

then the integral on the left hand side of equation (9) 
is equal to XCn(e~,), (e[) being the nth moment of the 

n 

strain distribution. The am may then be determined 
from the expression 

am = 1/f(m) Z Cn (e~) (11) 
n 

and the distribution function is now determined by 
using equation (7). 

Hermite polynomial expansions have been used by 
other workers in discussing X-ray problems, in partic- 
ular by Berry (1947) and Kobe (1959). Berry, while in- 
vestigating the shape of diffraction lines from colloidal 
magnesium oxide, used Hermite polynomial expansions 
to represent observed line shapes in order to unfold the 
pure diffraction line shape from the observed line con- 
taminated by the response of the X-ray camera. Kobe 
(1960) has also suggested a method of determining the 
strain distribution function using strain moments by 
the use of the Gram-Charlier series (Cramer, 1946) 
which uses a polynomial expansion of the distribution 

function but gives no examples of its use. Kagan & 
Snovidov (1964), in concluding a paper devoted to the 
analysis of unresolved components of diffraction lines, 
mention the possibility of using a moment analysis in 
determining physical broadening functions and suggest 
the use of polynomial expansions. The method used 
in this paper is similar to that suggested by Kobe but 
avoids the inconvenience of carrying through the anal- 
ysis in terms of the central m o m e n t s  ((eL--(eL)) n) 
and permits the use of several weight functions by a 
suitable choice of the orthonormal set of polynomials 
Pn(eL). 

Determination of the strain moments 

Following Kobe (1960) we expand the right hand sides 
of equations (2) and (3) and find 

A~ = 1 -(1/2!)  (2z~ Lho/a) 2 (eZL)+(1/4!) 
x(27:Lho/a) 4 ( e 4 ) - . . .  (12) 

B D = -(27: Lho/a) (eL) 
+ (1/3!) (2uLh0/a) 3 ( e ~ ) - . . .  (13) 

where ( e l )  is the nth moment of the strain distribution 
averaged over the length L in the crystal. For a set 
of m diffraction lines we have then two sets of m equa- 
tions for determining m even and odd moments respect- 
ively. Because the expansions used for the sine and 
cosine terms are not rapidly convergent some error will 
be introduced by using only the first few terms of each 
expansion. However some improvement may be made 
to this first approximation to the moments by a method 
to be discussed below which involves computing a 
first approximation to the strain distribution and then 
comparing distortion coefficients computed from this 
first approximation with those actually observed. From 
the differences in the coefficients corrections may be 
made to the approximate moments to derive an im- 
proved strain distribution and the process repeated 
iteratively. The moments having been determined, 
equations (7) to (11) define the scheme of determining 
the strain function. 

The choice of a suitable polynomial expansion for 
the strain function is determined by a suitably approx- 
imate weight function. The advantage of the representa- 
tion (7) is that if a reasonable guess can be made as to 
the form of the weight function then the terms anPn(ei) 
serve merely as nth order correction terms and are not 
required to represent the function itself. Physically it 
seems reasonable to choose W(eL) to be the Gaussian 
function since experimental observations (McKeehan 
& Warren 1953) indicate that this is a good approxima- 
tion. The use of this function then determines the use 
of Hermite polynomials Hn(ei) for the orthonormal 
set Pn(eL), since the identity 

f exp (-be~) Hn(b~eL) Hm(b~eL) b ~ deL 
= 2nzr ~n! (~mn (14) 

leads simply to the following equation for determining 
the expansion coefficients" 

A C 2 0  - 5 "  
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a n =  1/(2nn!) y P(eL) Hn(b÷eL) deL (15) 
where 

P(eL) = b*rc-* exp ( - b e ~ ) - r  an Hn(b*eL) • (16) 

The multiplier b~n -* is chosen to normalize the integral 
of  P(eL) over all positive and negative strains to unity, 
b being a parameter  of  the weight function. 

Using the identity 

k<_n]2 (__ 1)~ e~-2k b(n-2k)/2 2 n n! 
Hn(b'r eL) = ,S (17) 

k=O k! (n - 2 k)! 2 z/c 

for the nth Hermite  polynomial ,  and substituting in 
equation (15) we find 

k<nl2 (__ 1)k O~n-zk b (n-2k)/2 
a n =  X (18) 

1,=o k! (n - 2 k)! 2 zk 

where 
"n-2k = S P(ez) e77 zk dez; (19) 

that is, an-ze is the ( n - 2 k ) t h  moment  of  P(ez). 
To determine the coefficients an the value of b must 

be known. Since the second moment  of the weight 
function is identically equal to (2b) -1 and because, in 
a first approximation,  this is the most important  mo- 
ment  in determining the shape of the distribution func- 
t ion P(ez), b is put equal to (2~2) -1 where ~2 is the 
second moment  of the distribution determined from 
the set of  equations (12). It will be noticed that  when 
P(ez) is exactly Gaussian then all an for n # 0  are iden- 
tically zero and b is given exactly by the relation 

b = (2~2) -1 . (20) 

Method of computation 

To determine the moments  of  the strain distribution the 
two sets of  simultaneous equations defined by equations 
(12) and (13) were solved by a process of matrix in- 
version and the moments  finally computed from the 
inverse matrix and the distortion coefficients. 

1"0~ 

\ \ "  . 
~ . ~ k ~ \ ' ~  case 4 

m o . 

o . 0 , - -  ? - ° ° s e '  

. . . . .  . . . . . . .  I ! 
I 

0"001 10 30 50 70 90 120130 
ho2-h 2- k 2 / 2 

(a) 

< i  ........ 

10"4 i 20 4 0  ~ 0 

• , . , , , 

10s 10 30 50 80 100 120 
h 2 h 2 k 2 /2 

(b) 
Fig. 1. (a) Average cosine terms. (b) Average sine terms for all 

cases. 

Table 1. Scheme of  computation 

Observed data: cosine and sine distortion coefficients 

Matrix inversion and multiplication 

Even and odd moments +-- 

Expansion coefficients from moments 

Strain distribution function 

Recovery of distortion coefficients 
from distribution function as self 
consistency check 

correction of moments 
f 
I 

if residuals 
too large 

f 
I 

~- compare +-- . . . . . . . .  

computation of 
residuals 

if small enough 
accept distribution 

function 
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It proved of value to effect the computation in this 
way since, as discussed below, inspection of the inverse 
matrix made it clear how error in the measured dis- 
tortion coefficients would finally affect the computed 
moments. Furthermore, the inverse matrix may be 
used to improve the approximation to the moments 
computed from the series expansions of (12) and (13). 
If we consider the equation relating the magnitude of 
the moments with the distortion terms we have 

t~Zm = z~ amj 1Ci 
j=l  

where t~Em is the 2mth moment, Cl is the ith cosine 
coefficient and the a,7,/1 are the elements of the inverse 
cosine matrix. The error in the moments Zlt~Em due to 
error ACi in the coefficients is therefore given by 

zJO~zm= ~ amllzlCl. 
j=l  

Now computing a distribution function from the ob- 
served coefficients allows a recomputation of distortion 
coefficients corresponding to this distribution. Let 
these coefficients be written as C~, the superscript in- 
dicating the first approximation to the distribution 
function. Comparing the C~ with the C~ and writing 

A1Ci = C~- C) we may compute 

Al~2m= ~ am11 ( C ~ - C ) )  , 
j=l  

where/ll~2ra is the first order correction to the moments. 
The process may be repeated with the corrected mo- 
ments to compute a better approximation to the dis- 
tribution function, until the differences between the 
observed and computed distortion coefficients become 
stationary. Obviously with a small number of observed 
coefficients it will not always be possible to reduce the 
differences indefinitely since the higher approximations 
to the distribution function are being computed with a 
number of moments limited by the number of observed 
diffraction lines. 

Table 1 shows the scheme of the computation. 

Application of the method 

Preliminary computations were made with distortion 
coefficients computed from artificial strain distribu- 
tions. These strain distributions were constructed by 
using two Gaussian functions so displaced along the 
strain axis as to produce asymmetrical distributions. 
Table 2 lists the parameters used in generating these 
functions. The average cosine and sine terms were 
computed by numerical integration with L =  100/~ and 
a=4-123 A and terms were computed for six orders of 

diffraction with h0 equal to 2, 4, 6, 8 and 10. Fig. 1 
shows the computed average cosine and sine terms 
while the solid lines in Fig.2 shows the shape of the 
synthetic distribution functions. By progressively in- 
creasing the ratio of the parameters in the exponents of 
the Gaussian terms the synthetic strain functions them- 
selves were made more asymmetrical. The open circles 
in Fig.2 show for comparison the strain functions 
computed from the synthetic distortion coefficients. 
The agreement between the theoretical and 'experi- 
mental' curves is seen to be quite good. A remarkable 
feature is that for cases 2, 3 and 4, each of which con- 
tains two Gaussian terms, the ratio of whose exponents 
is 2, 4 and 8 respectively, a single parameter in the 
weight function is enough to approximate the theore- 
tical curves quite well. One might expect to improve the 
agreement by increasing the number of measured or- 
ders. By using more orders to determine the strain 
moments some gain is made in determining the lower 
orders more accurately. Inspection of Table 3 gives an 
example of how the ratio of the exact moments to the 
moments computed from the distortion coefficients 
varies with the number of orders measured for case 4, 
the most skew distribution considered. For the case of 
six orders the lower moments are certainly determined 
more accurately but the error of the higher moments 
becomes intolerable. Fig. 3(a) is a comparison of the 
theoretical and computed distributions for case 4 and 
shows the effect of error in the higher moments. Fig. 
3(b) shows the distribution computed for the same case, 
that is using six orders, but in which only the first six 
moments have been used, the expansion having been 
stopped at the sixth Hermite polynomial. There is a 
little improvement in the fit in comparison with the 
three order computation, but not enough to justify the 
extra experimental effort, in a particular case, of meas- 
uring three more orders. The increasing error in the 
determination of the moments from the set of equa- 
tions derived by expanding the average cosine and sine 
terms is of course due to the use of these poorly con- 
vergent expansions. For reasonably large arguments of 
the cosine and sine, that is for large values of h0 and 
the ratio L/a, many more terms would be required to 
represent these functions accurately. 

Table 2. 
aA ~ bB ~ 

e(ez) = ~ T -  exp ( - A e z  2) + ~ exp { -  B (eL-eL') 2} 

Case No. a A b B eL' 
1 0"3 6"56. 104 0.7 6-56. 104 0.002 
2 0"4 1.312. 105 0.6 6.56. 104 0.002 
3 0-4 2.624. 105 0.6 6-56. 104 0.002 
4 0-4 5.248. 105 0.6 6.56.104 0.002 

Table 3. Ratio of  exact to computed moments for case 4 

Number  of moment  

Ratio: 
3 Orders 
6 Orders 

1 2 3 4 5 6 7 8 9 

1"12 1"07 1"68 1"51 5"04 4"14 
1"05 0"98  1"23 1"08 1"83 1"47 3"82  2"84 12"83 

10 11 

8"84 92"9 

12 

59"8 
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Effect of the accuracy of the distortion coefficients 

Table 4 shows the inverse matrices for the cosine and 
sine terms for the case L/a = 23.8. The error Ao~2m in the 
2mth moment is given by 

3 

AO~2ra = X ag/ ci 
j=l 

where ct is the error in the ith cosine coefficient and 
the a~  1 are the elements of the inverse matrix. A similar 
expression is used for the error in the odd moments 
using the elements of  the inverse sine matrix and errors 
in the sine terms. The tolerable error in the distortion 
coefficients then depends on the magnitudes of the 
elements of the inverse matrix which depend in turn 
on the L/a ratio and the range of h0 values used in the 
experiment. For example, assuming that the absolute 
error in the cosine coefficients for case 4 is 0.01 and 
that the signs of the errors are so chosen as to give the 
largest possible error in the even moments, we find for 
the case of three measured orders 

Act2--3.7310-7 A~4=2.1910-11 A~6=6.2410-]6 

where the computed moments were 

ct2=6.8910-6 cq=l.4910-x0 ~6=2.7610-15. 

The percentage errors in the first three even moments 
due to these errors in the coefficients are then 5.4, 
14.6 and 22.6% respectively, which are quite accept- 
able. All of the distributions discussed above in fact 
were computed with distortion coefficients themselves 
first computed to six significant figures and then with 
the coefficients rounded off to two significant figures. 
In every case the loss of accuracy with the rounded off 
values was negligible. 

Measurements on cold-worked metals 

McKeehan & Warren (1953) studied cold work in 
thoriated tungsten by an X-ray method and derived a 
strain distrubtion from measurements of about seven 
reflexions. From Fig. 4 of their paper, distortion coef- 
ficients were estimated for the 200, 400 and 600 reflex- 
ions for averaging distances 125 A and 200 A respect- 
ively. For both cases the coefficients of the 600 reflex- 
ions were put equal to zero since the published curves 
indicate that they are certainly less than 0.01. A~ (400) 
was also put equal to zero for the case of L = 200 A for 
the same reason. This last case then becomes a rather 
extreme instance of a measurement being available for 
only one reflexion combined with very crude approx- 
imations for two other lines. Fig. 4 compares the strain 
distributions computed by the moment method with 
those of the original paper. Inspection of the inverse 
cosine matrix showed that for these cases there was 
not a sensitive dependence of computed moments on 
distortion coefficients and hence the good agreement 
of the two methods. An attempt to compute the distribu- 
tion for the distance 60 A failed because in this case 

it was obvious from the cosine inverse matrix that the 
values of the coefficients could not be read from the 
published curve accurately enough to allow computa- 
tion of an accurate set of moments. Attempts to com- 
pute strain distributions from the results of Warren & 
Averbach (1950) and Wagner (1957) failed for the same 
reason. 
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Fig.2. Shape of the distribution function for cases 1--4. Full 
lines: theoretical strain functions. Circles: results computed 
from synthetic distortion coefficients. 
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Fig. 3. Comparison of  theoretical (full lines) and computed distributions (circles) for case 4. (a) 6 orders and 12 polynomials used; 
(b) 6 orders and 6 polynomials used. 
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Fig.4.  Full  line: strain distribution derived by McKeehan & 
Warren (1953) for cold-worked thoriated tungsten. Circles: 
distribution computed by the moment  method. (a) L = 125/~, 
(b) L = 200 A. 
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1 ~ig.5. Strain distribution in reactor-irradiated graphite, ob- 
tained by the moment  method from Chipman & Warren's 
(1952) data. (a) L=20"l /~ , ,  (b) L=26"8 ~,. 
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Measurements on irradiated materials 

For the sake of comparing the distributions in cold 
worked metals with cases in which the strain was intro- 
duced by another means two experiments involving 
neutron damage were treated. 

Fig. 5 shows the distributions obtained by the moment 
method from the experimental data of Chipman & 
Warren (1952) from the 002, 004 and 006 reflexions from 
reactor-irradiated graphite. An interesting feature of the 
distributions is their change in shape for quite a small 
change in the averaging distance. While the broadening 
of the base of the curve towards positive strains as the 
averaging distance is decreased is probably a real effect 
consistent with a model of islands of inlerstitial atoms 
producing an expanded lattice in their vicinity, the 
small peaks, which could be thought to arise from 
regions of contracted lattice due to vacancies, are more 
likely due to errors in the higher moments of the 
distribution function. 

Measurements have been made on the first five h00 
reflexions from neutron irradiated single-crystal mag- 
nesium oxide by T.W. Baker of this laboratory. Fig.6 
shows a comparison of the distributions determined 
using all reflexions and a Fourier inversion and only 
three reflexions and the moment method. 

2 0 0  

IBO  

160  

t 40  

t 20  

IO0  

8 ,0  

60  

4 .0  

20  

o o 

- - - x - 3  

STnA IN  

Fig.6. Strain distribution in neutron-irradiated magnesium 
oxide, from measurements made by Baker (1964). Full line: 
distribution computed by the moment method with the use 
of 3 reflexions. Circles: distribution computed by Fourier 
inversion of measurements for 5 reflexions. 

Conclusions 

In conclusion the following remarks may be made 
concerning the use of this method. 
1. When properly chosen measurements are made on 

three reflexions from a distorted crystal a reasonably 
accurate strain distribution may be derived. 

2. Intermediate steps in the computation enable as- 
sessments to be made of the importance of the res- 
pective distortion coefficients determined from the 
measurements and where emphasis should be placed 
in improving experimental accuracy. 

3. Although the method has been illustrated using the 
Gaussian as an appropriate weight function a suit- 
able choice of the set of orthonormal polynomials 
permits a wide range of weight functions to be used. 

The author wishes to thank Professor A. J. C. Wilson 
for comments on the manuscript and Mr T.W.Baker  
for permission to include some of his unpublished 
results. 
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